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Uncertainty propagation in kinetic systems

In a nonlinear chemical system, uncertainty of certain input 
parameters become magnified while others are suppressed

Model

Refining most influential uncertain parameters is fastest way 
to improve a model

Input parameters (𝝀)
Reaction rate coefficients (𝒌)
Species thermodynamics (𝑮)

Output (𝒄)

Product concentrations

2



Outline
• Parameter estimation leads to uncertainty 
• Local and global uncertainty analysis implementation in RMG
• Demonstration of results
• Proposal for a new model development workflow
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Parameter estimation leads to uncertainty
• RMG uses many methods to estimate thermo and kinetic 

parameters
• Uncertainty assignment must correspond to the confidence we 

have in various parameter sources
• Library kinetics derived from quantum chemistry or experiment has a very 

different uncertainty than a rate derived from averaging rate rules
• A parameter’s uncertainty cannot be decoupled from the 

estimation methods used to derived that parameter!
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Estimating thermochemistry: a decision tree
• 3 types of sources

• Thermo Library
• QM (on-the-fly quantum mechanics)
• Group additivity (GAVs)

• But actually 2 additional types of 
mixed sources for radicals!
• Thermo Library saturated value + HBI 

correction from GAVs
• QM saturated value + HBI correction 

from GAVs
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Found in	Thermo
Library?

Thermo =	library	
value Is	it	a	Radical?

Thermo =	
saturatedThermo
+	HBI	correction

Is	QM	on?

Is	it	Cyclic?

Thermo =	from	
QM	job Thermo =	

sum(GAVs)

Thermo =	
sum(GAVs

Y N

N

N

Y

Y

Y
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For each 
resonance 
isomer

Prioritize resonance 
isomer thermo by 
rank



Thermo uncertainty assignment
• Assume a uniform uncertainty distribution in free energy

• Assign uncertainties according to what parameter sources 
constitute the thermo estimate
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Fixed	sources	with	true	values;	these	errors	are	correlated	when	
used	estimate	multiple	parameters

Uncorrelated	error	associated	with	using	the	group	
additivity	method	for	this	particular	thermo parameter



Estimating reaction kinetics: a decision tree
• 3 types of kinetics 

sources:
• Library reaction kinetics
• Training reaction kinetics
• Rate rule kinetics

• But there is 1 more type of 
mixed source!
• Rate rules + Rate rules 

originating from training 
reactions
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Found in	Seed	or	Reaction	
Library?

Kinetics	=	library	kinetics Does	it	match	a	training	
reaction	exactly?

Kinetics	=	training reaction	
kinetics Use	Rate	Rules

NY
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Rate rules (exact): k(T) = kC/H3/CO,C_methyl(T)
Rate rules (estimate): k(T) = kX_H,C_methyl(T)

Group additivity: k(T) = kC/H3/CO(T)kC_methyl(T)k0(T) 

1. Identify reaction

2. Determine most specific functional groups

3. Estimate rate coefficient
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Rate Rule 
Kinetics

Over 40 Reaction 
Families in RMG



Kinetics uncertainty assignment
• Each reaction rate is assigned a loguniform uncertainty distribution

• Assume that library, training, and pdep reactions have fixed 
uncertainties                    ,                 ,       

• Rate rule estimated kinetics’ uncertainty:
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Each	family	has	an	associated	error.	Some	families	are	
more	sparsely	populated	than	others	and	will	have	
more	error.		But	currently	all	set	to	the	same	value

Error	associated	with	using	a	non-exact	match.		Used	for	weighting	against	rates	using	lots	of	
averages	(N=number	of	rules	averaged).		(Distance	may	be	a	better	substitute	eventually)

Intrinsic	rate	rule	error



Demontration: Track parameters and assign uncertainties

• Test it live in 
findParameterSourcesAndAssignUncertainies.ipynb

• A variety of new database functions programmed to trace all 
parameter estimation sources and their weights

• New class Uncertainty contains function 
extractSourcesFromModel()
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Model

Input parameters (𝝀)
Reaction rate coefficients (𝒌)
Species thermodynamics (𝑮)

Output (𝒄)

Concentration

Local uncertainty propagation
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Assumptions
• Linear dependence on 𝜆	(first-order, evaluated at nominal input values)
• Independent inputs 𝜆 with no covariance

𝑆4 =
Variance	contributed	by	𝜆4
Total	output	variance ≈

𝜕𝑐
𝜕𝜆4
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First-order sensitivity index



Local uncertainty propagation: implementation
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Parse rate rules and 
thermodynamic 

groups from model

Assign uncertainties

Compute first order 
sensitivities PyDAS DASPK3.1

Local output 
uncertainties

Python Fortran
Python 
wrapper

L. Petzold, DASPK 3.1, http://www.engineering.ucsb.edu/~cse/software.html

rmgpy.tools.uncertainty



Global uncertainty analysis

Methods
• Simplest but slowest: Monte Carlo
• Optimize the sampling

• Latin hypercube sampling 
• Sobol sequences

• Basis set expansions
• Fourier Amplitude Sensitivity Test (FAST)
• High-dimensional model representations (HDMR)
• Polynomial Chaos Expansions (PCE)
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Model

Input parameters (𝝀) Output (𝒄)

Sample	from	entire	
parameter	uncertainty	
probability	distribution

After	many	simulations,	
you	can	approximate	the	
output	uncertainty	
distribution

Eliminates linearity assumption, 
but is computationally 
expensive…
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Legendre Polynomials Polynomial Chaos Expansions (PCE) *

𝑐 𝜉 ≈ >𝛼9Ψ9 𝜉6, 𝜉7, … , 𝜉X  
Y

9Z+
𝜉 is set of random, uniformly distributed independent 
variables  ∈ [−1, 1]
Ψ9 are Legendre polynomials that form an orthogonal 
basis set

Compute coefficients using Galerkin projection
𝛼9 =

1`:
`:

a

Moments and variance of 𝑐 𝜉 	can then be computed

* D. Xiu, SIAM J. Sci. Comput., 2002.
** P. Conrad and Y. Marzouk, SIAM J. Sci. Comput., 2013.

Adaptive Smolyak Pseudospectral Approximations **

• Sampling performed adaptively done using a sparse 
grid, leading to faster convergence

• 3 ways to construct PCE: 
• adapt to fixed order
• adapt to a heuristic error tolerance
• select wall clock time



Global uncertainty analysis: rmgpy.tools.muq
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Random Uniform Inputs 𝝃

Map 𝜉 to parameters: 
kinetics ln(km) and 
thermodynamics Gn

Modify Cantera objects 
using RMG

Simulate reactor with 
Cantera

Product Concentration c

ReactorModPiece

Initialize with 
Legendre 
Polynomials Ψ9

Load kinetic model
and initialize
ReactorModPiece

Create
SmolyakPCEFactory

Sample parameter 
space

Obtain PCE and 
variance statistics

MIT 
Uncertainty 

Quantification 
Library

http://muq.mit.edu

http://cantera.org

Package	for	
anaconda	now	
available	for	
Ubuntu



Uncertainty analysis for a toy phenyldodecane model

Pyrolysis reaction 
conditions
T = 350 °C
P = 35 MPa
72 hours
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Model
81 species
18 group additivity values
17 thermo library values
35 independent thermodynamic parameters

1427 reactions
4 reaction families:
• H_Abstraction (14 rate rules)
• R_Recombination (6 rate rules)
• R_Addition_MultipleBond (7 rate rules)
• Disproportionation (13 rate rules)
40 independent  rate rules
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Phenyldodecane Undecene

Global Local Global Local

Mole fraction 0.187 0.146 0.141 0.108
Total variance 𝝈𝟐 𝐥𝐧 𝒄 0.58 1.64 0.53 1.28

Reaction kinetics Sensitivity Index 			𝑺𝒋 (%)

25.1 43.3 3.5 12.7

18.6 22.4 2.3 7.0

Species thermochemistry Sensitivity Index 			𝑺𝒋 (%)

15.1 2.3 82.4 61.0

2.7 0.7 9.1 10.2

16.1 31.1 0.9 9.1

Independent parameter 
uncertainty: global vs. local



Correlated uncertainty propagation
• Conventional methods assume kinetic and thermo parameter 

uncertainties are independent, even though they are composed of 
correlated sources

• There are contributions from correlated and uncorrelated uncertainties:
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Correlated uncertainty propagation: implementation
• Classes KineticParameterUncertainty and 
ThermoParameterUncertainty now have the function 
getPartialUncertainty(), which can retrieve the relative 
contribution of uncertainty towards a parameter from a correlated 
source such as a rate rule

• Class Uncertainty has the function 
assignParameterUncertainties(correlated=True) 
which can now be used to assign correlated uncertainties

• Use the resulting objects that store correlated source information 
and partial uncertainty to propagate within the existing local and 
global uncertainty classes
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Demonstration of results
• findParameterSourcesAndAssignUncertainies.ipynb

demonstrates what the partial uncertainty objects look like
• localUncertainty.ipynb demonstrates uncorrelated and 

correlated uncertainty propagation
• globalUncertainty.ipynb demonstrates uncorrelated and 

correlated global uncertainty propagation
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Model construction workflow: old
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Generate model

Simulate model in 
CHEMKIN, compare 
against experiment

Sensitivity analysis

Perform quantum 
chemistry 

calculations to 
improve most 

sensitive parameters, 
add to RMG 

database

Experimental conditions

Cycle is repeated until we have reasonable confidence in our model



Model construction workflow: new
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Generate model

Simulate model in 
CHEMKIN, compare 
against experiment

Investigate possible 
model discrepancies

Perform quantum 
chemistry calculations to 
improve most influential 

parameters; update 
RMG database

Experimental conditions

Uncertainty analysis

Cycle is repeated until we have reasonable confidence in our model



Summary
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Conclusions
• Local uncertainties are inaccurate when parameter uncertainties are large due 

to the nonlinearity of chemical kinetic reaction systems
• Kineticists should consider correlations in their uncertainty analysis due to the 

inherent cancellation errors between groups



Local uncertainty analysis: 
correlated vs. independent parameters
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Loss of degrees of freedom…
1427 reactions collapses to 40 independent  rate rules
81 species collapse to 35 independent thermodynamic 
parameters

Independent 
parameters

Correlated 
parameters

Total variance 
𝛔𝟐 𝐥𝐧 𝐜 1.47 0.47

Independent Reaction Rate Coefficients Rate Rules



Drastic reduction in uncertainty introduced by 
thermochemistry when group additivity values accounted for
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Cancellation of group values reduces 
thermochemistry error



Is	there	an	exact	rate	
rule		match	for	the	
reaction	template?

Use the	rate	rule
Find	more	general	
nodes	containing	

data

Filter	by	minimum	Euclidiean
distance.	Is	there	more	than	one	

rate	rule?

Average	them Use	the	rate	rule

NY

Y N

Understanding how rate rules work: new method minimizes 
Euclidean distance to select the best match
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Identify reaction 
template: the most 
specific set of leaves 
in the tree 

1          A
/ \ / \
2   3      B   C
/ \ / \
4   5    D   E

XH        +       Yrad

Functional	groups	
more	specific	
towards	leaves	

5D

2B,	1D

2B

2B
Previously,	we	used	minimum	Manhattan	distance
D(2B,5D)	=	2,	and	D(1D,5D)	=	2	

With	Euclidean	distance:
D(2B,5D)	=	 1 + 1� ,	and	D(1D,	5D)	=	 0 + 4�

Minimizes usage of highly general nodes



Preparing the rate rule trees
1. Each family contains Training Reactions.  Add these as rate rules to 

the most specific template in the trees.
2. Average up to fill up the trees
• Find all cross layer template combinations i.e. 1A, 1B, 1C, 1D, 1E, etc.
• Average the distance 1 children that exist, i.e. 1A = avg(1B, 1C, A2, A3) IF 

the original template contains no kinetics data
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1          A
/ \ / \
2   3      B   C
/ \ / \
4   5    D   E

XH        +       YradPreviously:
• Did	not	average	all	cross-layer	combinations	

à reactions	tend	to	use	more	general	nodes	
as	estimates

• Used	pure	children	averages,	i.e.	1A	=	avg(2B,	
2C,	3B,	3C)	à children	are	not	mutually	
exclusive	and	may	lead	to	biasing	of	their	
parents



• Species source

• Reaction source
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Source tracking to original database objects for easy 
investigation



When is uncertainty analysis useful
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Understanding the discrepancy between model and data
• Errors bars on input parameters in the model 

are underestimated
• Error bars on experimental data are 

underestimated
• Propagated error bounds on model due to 

input parameter uncertainties are 
underestimated

• Model structure is missing key features such 
as reaction paths or species

• Simulation is missing key approximations or 
using incorrect assumptions about 
experimental conditions and physics

30Uncertainty	analysis	addresses	primarily	the	bullet	points	in	red


