
RMG	Study	Group
Basics	of	Git

Nathan	Yee
2/23/2015

1



Key	URLs

§ http://www.github.com/GreenGroup
§ Git repository	of	all	RMG-Py code

§ http://greengroup.github.io/RMG-Py/
§ Online	version	of	the	current	RMG-Py documentation

§ http://rmg.mit.edu
§ Official	RMG-Py documentation,	thermodynamics	and	
kinetics	database	browser,	and	web	tools

§ http://dev.rmg.mit.edu
§ Developmental	version	of	rmg.mit.edu with	latest	features	
and	potential	bugs

§ To	use,	add		18.172.0.124		 dev.rmg.mit.edu to	hosts	file	in	
your	operating	system

2



Git

§ Git is	a	version	control	tool
§ Multiple	users	can	edit	multiple	copies	of	code	
§ Single	user	can	create	multiple	branches	for	a	
single	repository

§ Online	detailed	tutorial:	
§ http://git-scm.com/book

§ Where	to	find	programs	to	help	you	use	git:	
§ http://git-scm.com/downloads

3



Getting	started:	create	a	local	repo

Two	common	scenarios:	(only	do	one	of	these)
a) To	clone	an	already	existing	repo	to	your	current	

directory:
$ git clone <url> [local dir name]
This	will	create	a	directory	named	local	dir name,	containing		a	working	
copy		of	the	files	from	the	repo,	and	a	.git directory	(used	to	hold	
the	staging	area	and	your	actual	repo)

b) To	create	a	Git repo	in	your	current	directory:
$ git init
This	will	create	a	.git directory	in	your	current	directory.
Then	you	can	commit	files	in	that	directory	into	the	repo:
$ git add file1.java
$ git commit –m “initial project version”

4



Basic	Git Workflow

1. Modify files	in	your	working	directory.
2. Stage files,	adding	snapshots	of	them	to	

your	staging	area.
3. Make	a	commit,	which	takes	the	files	as	

they	are	in	the	staging	area	and	stores	that	
snapshot	permanently	to	your	Git directory.

5



Git file	lifecycle

Notes:
If	a	particular	version	of	a	file	is	in	the	git directory,	it’s	considered	committed.	
If	it’s	modified	but	has	been	added	to	the	staging	area,	it	is	staged.	
If	it	was	changed since	it	was	checked	out	but	has	not been	staged,	it	is	modified.

6



Local	Commits

1. ‘git status’	to	check	which	files	are	modified
-’git diff	<filename>’	shows	line-by-line	changes

2. ‘git add	<filename>’	stages	all	desired	files	
3. ‘git commit’	creates	new	snapshot	of	staged	files	

and	adds	to	the	history
4. ‘git log’	pulls	up	history	of	branch;	should	see	your	

latest	commit

7



Writing	Commit	Messages

§ First	line	is	<80	character	summary
§ Followed	by	detailed	description

§ List	of	all	additions/changes
§ Motivation
§ Implementation	details

§ Examples	of	bad	git messages:
§ “Typo”
§ “Add	database	entries”

§ After	saving	message	a	unique	commit	string	is	
created	for	each	entry

8



Git Branches

§ Branches	start	a	new	history	to	make	
experimental	features

§ Allows	experimentation	without	fear	of	“messing	
up	the	code”

9



Commands	used	with	Branches

§ Git branch:		pulls	up	a	list	of	all	the	branches	
§ Git branch	<new	branch>:	forks	a	new	from	
the	current	head

10

From	this	commit:	
Git branch	nice_feature



Commands	used	with	Branches

§ Git checkout	<location>:	moves	the	head	to	location	
(can	be	a	commit	string	or	branch	name)

§ Git merge	<branch>:	merges	all	commits	from	branch

11

Git checkout	abcd1234	
brings	you	here	from	

anywhere	else

From	here:
Git merge	nice_feature
Commits	the	nice	feature	

to	master



Advanced	History	Control:	Rebase

§ Normally	when	merging:	make	a	new	commit	that	
incorporates	all	changes

§ From	experiment:	Git rebase	master	merges	and	
chronologically	reorders	commits

12



Full	Control:	Git rebase	interactive

§ Git rebase	–i <commit	string>:	opens	
interactive	GUI	that	allows	full	rewriting	of	
history
§ Delete	or	reorder	commits
§ Squash	commits	together
§ Make	changes	to	a	commit
§ Rewrite	commit	messages

§ WARNING:	do	not	use	this	to	rewrite	history	
you	have	pushed	to	official

13



Green	Group	Repos

14

Official	Green	Group	Repo

• https://github.com/GreenGroup/
• For	official	distribution

Personal	Github Repo

-Sharing	developments	with	other	users
-Back	up	of	in-progress	code

Local	Repositories	

-Running	jobs
-Code	development	and	debugging

Gi
tp

us
h

Pu
ll	
Re

qu
es
t

Gitpull	 Gitpull	



Setting	up	Remote	Repos

§ Git remote	add	<remote	name>	<url>

§ If	you	originally	forked	from	GreenGroup official:
§ Git remote	rename	origin	official
§ Create	your	own	fork	on	Github and	name	origin

15



Pulling/Pushing	Commits

§ Each	repo	has	its	own	branches
§ Commands	for	pulling	and	pushing	call	
branches
§ Most	common	call:	git pull	official	master
§ For	pushing:	git push	origin	new_feature

§ Good	idea	to	try	to	keep	branch	names	
consistent

16



Keeping	Official	Repo	Clean

§ To	push	a	commit	to	official:
1. Clean	up	your	commit	history	with	Git rebase	–i

<first	new	commit>
2. Check	that	your	current	commit	is	updated	up	to	

the	official	Git pull	–rebase	official	master
3. Push	to	your	personal	GitHub	repo:	Git push	

origin	new_feature
4. Make	formal	pull	request from	your	GitHub	

Repo

17



Common	Git commands

18



You	can	do	all	of	this	using	Git-cola:	
a	powerful	GUI	interface

Commit	or	revert	specific	lines.		Stage	files	and	write	commit	messages	
graphically.		Amend	commits.

19



Git-cola:	a	powerful	GUI	nterface

Visualize	past	commit	history	and	repository	branches.		(Great	for	tracking	
specific	code	changes.)

Available	for	Windows,	
Mac,	and	Linux!

20


