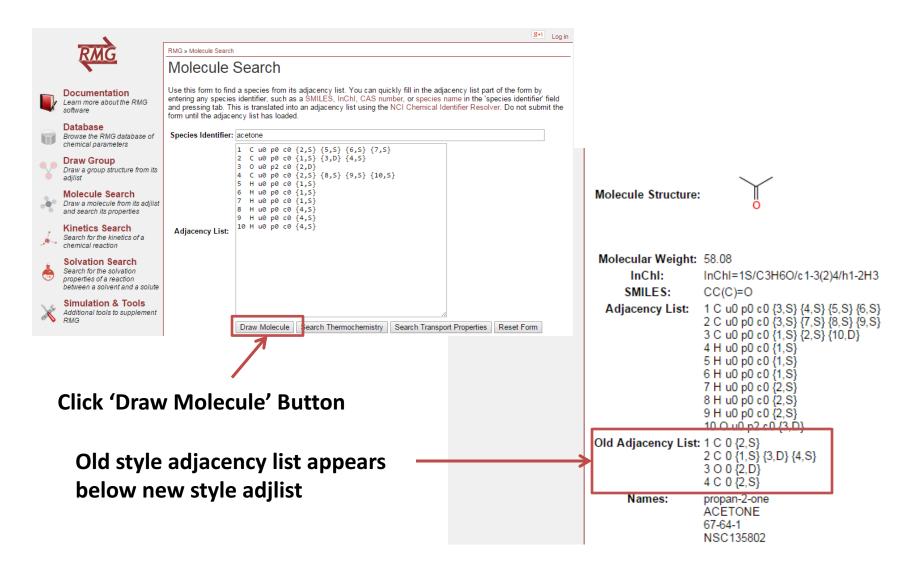


RMG-Py Release Updates

Connie Gao 1/26/2015 RMG Study Group

Progress since last summer

- New-style adjacency list completely merged (See RMG Study Group on new-style adjacency list for more details)
 - Uses triple bonded version of CO
 - Families now well defined with distinctions between singlet vs. triplet requirements
- Database Format Improvements
 - Kinetics libraries and training reactions now separate dictionaries from rates
 - Lots of unit tests in place for checking database errors


Adjacency list backwards compatibility

- Old style (RMG-Java) adjacency lists can be used as input in RMG-Py. So can intermediate style adjacency lists.
 - Errors will be raised if electronic state is not specific enough, e.g.

1 C 2 {2,S} {3,S} 2 H 0 {1,S} 3 H 0 {1,S}

Default multiplicity used: 2s + 1

How to fetch old style adjlists from RMG-website

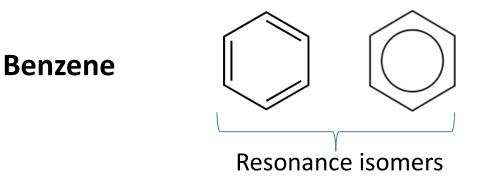
How to convert new style adjlists into old style adjlists

	941					
RMG	8+1 Log in RMG » Simulation and Tools	Go to Simulation & Tools Section				
	Simulation	Simulation & Tools				
Documentation Learn more about the RMG software	 Create Input File: generate an input file for an RMG-Py job through a web form, or upload an existing input file for easy editing through the web form. 	Additional tools to supplement RMG				
Database Browse the RMG database of	 Submit Job: Submit a RMG-Py job online by providing your email address. We will email you the result when it's done. 					
chemical parameters	Tools					
Draw Group Draw a group structure from its adjlist	 Visualize Chemkin File: visualize a model by supplying its chemkin file and RMG-generated species dictionary. 					
Molecule Search Draw a molecule from its adilist	 Model Comparison: compare two RMG-generated models by supplying their individual chemkin files and species dictionaries. 	Convert adjacency lists tool				
and search its properties	 Convert Adjacency Lists: convert adjacency lists in a text file to old-style adjacency lists which are compatible with RMG-Java. 	can mass convert .txt file of				
Search for the kinetics of a chemical reaction	 Merge Models: merge two RMG-generated models by supplying their individual chemkin files and species dictionaries. 	new adjlists into old adjlists				
Solvation Search Search for the solvation	 Generate Flux Diagram: generate a flux diagram video by supplying a RMG input file and completed mechanism, or with a customized set of concentration profiles from a Chemkin job. 					
properties of a reaction between a solvent and a solute	PopulateReactions: generate all possible reactions from a set of initial species.					
Simulation & Tools Additional tools to supplement	7. Plot Kinetics: plot forw; along with a RMG dicti	1				

8. Create RMG-Java Kine

RMG » Simulation and Tools » Convert Adjacency Lists

Convert Adjacency Lists


Upload your RMG Dictionary text file and convert them back into old style adjacency lists compatible with RMG-Java. Not that adjacency lists containing heteroatoms such as N, Ar, Ne, and He are not compatible with old style adjacency lists and will result in conversion failure.

RMG Dictionary: Choose File No file chosen

Submit

Changes to aromaticity detection

- Use RDKit to detect aromaticity in rings and convert a copy of the molecule to one with Cb bonds. Retain aromatic form as a resonance isomer
 - Convert to Cb bonds only if ring size is 6-membered and all ring members are carbons

- Algorithm fetches thermodynamic parameters from all resonance isomers and chooses thermo from isomer with more stable enthalpy
 - Can now obtain aromatic Benson group corrections
- Retains symmetry number correction since aromatic resonance isomer has both more stable enthalpy and higher symmetry number
- Now exhibits identical behavior of RMG-Java

Pull request 1: Handling duplicate reactions in reaction libraries and seed mechanisms

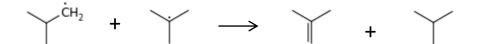
 Allow duplicate Pdep + Non-pdep reactions in reaction libraries and seed mechanisms

NNH(38)=N2+H(5) 3.300e+08 0.000 0.000 DUPLICATE

NNH(38)+M=N2+H(5)+M 1.300e+14 -0.110 4.980 CH4(16)/2.00/ CO2(17)/2.00/ C2H6(27)/3.00/ H2O(28)/6.00/ H2(4)/2.00/ Ar/0.70/ DUPLICATE

• Previously, RMG was only including one of the reactions, now it includes both as intended

Some issues remaining on handling duplicate PLOG reactions


CHEMKIN can read the following format:

OH(5)+CO(10)=CO2(11))+H(2)	1.000e+00	0.000	0.000
PLOG/ 0.001	9.300e+10	0.000	0.000	/
PLOG/ 0.001	7.100e+05	5 1.800	1.133	/
PLOG/ 100.000	1.500e+11	L 0.000	1.987	/
PLOG/ 100.000	1.900e+05	5 1.940	0.000	/
PLOG/ 2000.000	3.700e+07	7 1.340	2.186	/

Both RMG-Py and RMG-Java require conversion to the following:

OH(5)+CO(10)=CO2(11)	1.000e+00 0.000		(0.000	
PLOG/	0.001	9.300e+10	0.000	0.000	/	
PLOG/	100.000	1.500e+11	0.000	1.987	/	
PLOG/	2000.000	3.700e+07	1.340	2.186	/	
DUPLICATE						
OH(5)+CO(10)=CO2(11)	+H(2)	1.000e+0	0 0.000	(0.000
	10)=CO2(11) 0.001			0 0.000 1.133	(000.0
PLOG/		7.100e+05	1.800		(0.000
PLOG/ PLOG/	0.001 100.000	7.100e+05	1.800 1.940	1.133	(0.000

Pull request 2: Handling duplicate reactions in a reaction family with multiple transition states

Disproportionation

- Reaction can occur via two transition states, which may have differing kinetics.
- RMG was previously considering them as degenerate reactions
 - Picked up either set of kinetics randomly and increased degeneracy
- Fix: Check template of reaction and increase degeneracy only if templates are identical, otherwise add duplicate kinetics

Task List for Release

- Packaging RMG
 - Package RMG as an executable for Windows (py2exe or NSIS), Linux (Freeze or PyInstaller), and Mac (py2app)
- Comprehensive and working examples
 - May need to compare against RMG-Java
 - Crash checks
- Optional: Easy comparison txt files for kinetic and thermo values in database
- RMG-Py publication