
Re-introduction	to	RMG,
Enlarge	Reaction	Filter	Algorithm,
and	User	Accessibility	Features

Nick	Vandewiele and	Connie	Gao
RMG	Meeting

January	15,	2015



Agenda

Intro	to	RMG
Learning
Contributing
Running

Update	on	recent	advances:
enlarge	reaction	filter
windows	anaconda
new	visualization	features

Discussion	of	issues



Learning	about	RMG

http://rmg.mit.edu
http://cheme.scripts.mit.edu/green-group/rmg/
http://rmg.sourceforge.net
Many	publications:

RMG-Py:	Gao	et	al.	Comp.	Phys.	Comm.	(accepted)
P-dep:	Allen	et	al.	PCCP 14(3)	,	1131-1155	(2012)
QMTP:	Magoon	et	al.	Comp.	Chem.	Eng. 52,	35-45	(2013)
...



Contributing	to	RMG

through	a	version	control	system	called	“git”
Collaboration	platform:	Github.com
https://github.com/ReactionMechanismGenerator/
Reporting	issues
Tests:	unit	tests,	continuous	integration



Running	RMG

On	your	local	computer
On	pharos.mit.edu

Get	an	account	on	pharos.mit.edu	(talk	to	admin	Nick)
See	e-mail.



Enlarge	Reaction
Filter	Algorithm



Starting	species
in	“core”

Kinetic	model

Reactor	conditions	
(T,	P)

Kinetics	and	thermo	
databases	and	

reaction	templates

1 2

34
YN

Simulate	reactor

A
B

C

D

A
B

C

D

E

FA
B

core
edge

Original	Flux-based	algorithm

7

Find	all
possible	reactions

Is	core	complete?
Add	edge	

species	with	highest	
flux	to	core



Isolating	the	speed	and	memory	
pain	point	in	RMG
• Pain point is generateReactions()
• Applying	a	reaction	template	recipe	between	
permutations	of	all	reactants

• Current	algorithm:
1.	Reacts	species	together	(slow)	
2.	Determines	which	reactions	are	negligible	(fast)

• Let’s	prevent	species	from	reacting	together	
through	pre-filtering when	we	know	their	reactions	
will	be	negligible



Starting	species
in	“core”

Kinetic	model

Kinetics	and	thermo	
databases	and	

reaction	templates

3 4

5

6

Y

N

Simulate	reactor,
Check	fluxes	of	edge

reactions

Modified	flux	algorithm	with	reaction	
filtering

9

Find	all
possible	reactions
using	react	flags

Is	core	complete?

Add	edge	
species	with	highest	

flux	to	core

Create	arrays	
unimolculecularThreshold and	
bimolecularThreshold based	on	

initial	concentrations

Generate	unimolecularReact
and	bimolecularReact flags

7
Simulate	reactor	using	new	core,
update	unimolecularThreshold
and	bimolecularThreshold

1 2

• Don’t	waste	CPU	time	on	generating	reactions	that	
will	always	have	negligible	flux

• Don’t	react	all	core	species	together	at	each	step,	only	
react	them	when	deemed	‘ready’	to	react.		This	avoids	
the	problem	of	congestion	we	used	to	have	with	too	
many	initial	species	being	added	by	seed	mechanisms.

Key	Takeaways



Key	variables	for	filtering	reactions	
based	on	diffusion	limit	rate	kdiff
• unimolecularThreshold and	
bimolecularThreshold
• Binary	arrays	storing	flag	for	whether	a	species	or	a	pair	of	
species	are	above	a	reaction	threshold
• Threshold	is	set	to	True if	rate	=	kdiff*CA >	
toleranceMoveToCore*ratechar at	any	given	time	t	in	the	
reaction	system

• unimolecularReact and	bimolecularReact
• Binary	arrays	storing	flags	for	when	the	
unimolecularThreshold or	
bimolecularThreshold flag	shifts	from	False to	True
• RMG	should	then	react	those	species	together

10



Results	show	more	than	10x	speedup	for	heptane	case	
with	similar	accuracy	and	memory	usage
• Master	branch:	1	day,	2500	MB,	128	spc/1410	rxns (core)
• enlargeReactionFilter branch:	2.5	hr,	2000	MB,	248	spc/2420	rxns (core)

Master eRF



Testing	for	robustness

12

• Handling	pressure	dependence
• Testing	buiding real	models

Opportunities	forfurther speedup
• Individual	kmax for	each	family	may	further	filter	
reactions	than	the	conservative	kdiff,	especially	when	
evaluated	at	lower	temperatures
• Pre-estimates	of	thermo	∆Hrxn may	be	necessary

• Numerical	optimization	and	cythonization



User	Accessibility	
Features



RMG-Py binaries	for	Windows

• Currently	compiling	dependencies	using	Anaconda	
for	Windows
• It	is	possible	to	compile	gfortran and	c/c++ code	without	
Visual	Studio!!		
• Uses	mingwpy conda package

• Compiling	and	testing	using	Windows	7	Enterprise	32-bit	
and	64-bit	VMs
• PyDAS and	PyDQED are	working!
• Only	openbabel left	to	package

• Binaries	to	be	released	with	RMG-Py paper



New	CHEMKIN	visualization	
features	on	RMG	website
• Thermo	comments
• Heats	of	Reaction:	ΔHrxn ,ΔSrxn,	and	ΔGrxn

• Filtering	reactions	by	species	as	well	as	families
• Flux	pairs	now	saved	into	CHEMKIN	comments
• Useful	for	external	flux	analysis	tools
• iPython and	automatic	flux	analysis	tools	in	the	pipeline!

This	is	all	live	on	http://rmg.mit.edu



Future	Wiki	for	RMG
• How	can	we	store	guides	that	don’t	belong	in	the	
documentation	but	are	helpful	to	developers?	
• i.e.	How	to	set	up	a	job	on	Pharos,	how	to	use	and	build	
anaconda	binaries,	how	to	set	up	RMG	web	server

• Richard	has	suggested	Github Wiki
• Open	source	documents	for	quickly	editable	guides

• Does	not	require	explicit	sharing:	better	than	Slack	and	Google	docs	
• Markdown	support

• But	is	there	security	for	password	sensitive	information?



Key	variables	for	filtering	reactions	
based	on	diffusion	limit	rate	kdiff
• unimolecularThreshold and	bimolecularThreshold

• Binary	arrays	storing	information	about	whether	a	species	or	a	pair	of	
species	should	react

• Threshold	is	True if	unimolecular	rate	=	kdiff*CA or	bimolecular	rate	=	
kdiff*CA*CB	is	greater	than	toleranceMoveToCore*ratechar at	any	given	time	
t	in	the	reaction	system.

• unimolecular	kdiff=1e14	s^-1	for	unimolecular
• bimolecular	kdiff=1e13	cm^3/mol*s
• In	the	initialization	step,	the	threshold	arrays	are	set	by	initial	
concentrations
• If	Species	A	has	a	positive	initial	concentration,	then	its	unimolecular	threshold	is	
True

• If	Species	A	and	Species	B	both	have	positive	initial	concentrations,	then	their	
bimolecular	threshold	is	True 

• If	Species	A	has	positive	concentration	but	Species	B	has	zero	concentration,	their	
bimolecular	threshold	is	False

• unimolecularReact and	bimolecularReact
• Binary	arrays	storing	flags	for	when	the	unimolecularThreshold or	
bimolecularThreshold shifts	from	False to	True for	any	core	species	
or	pair	of	core	species,	indicating	that	RMG	should	explore	reactions	for	
those	species	and	enlarge	the	edge

17



Detailed	write-up	for	reaction	
filter	algorithm

1. Set	up	unimolecular	and	bimolecular	reaction	threshold	arrays	in	reaction	model	initialization	step.		
Allow	any	positive	concentration	species	to	have	their	unimolecular	and	bimolecular	reaction	thresholds	
to	be	set	to	TRUE.

• If	Species	A	has	a	positive	initial	concentration,	then	its	unimolecular	threshold	is	TRUE
• If	Species	A	and	Species	B	both	have	positive	initial	concentrations,	then	their	bimolecular	threshold	is	TRUE,	
• If	Species	A	has	positive	concentration	but	Species	B	has	zero	concentration,	their	bimolecular	threshold	is	FALSE

2. Create	unimolecular	and	bimolecular	react	flags	based	on	changes	in	reaction	threshold	during	model	
generation.	

3. Enlarge	Model	Edge	based	on	unimolecular	and	bimolecular	react	flags	(the	idea	is	that	if	these	species	
concentrations	go	above	the	threshold	for	reaction	during	the	entirety	of	the	reactor	residence	time,	we	
will	allow	them	to	react,	otherwise,	don’t	waste	time	on	reaction	CPU	time	for	reactions	that	will	always	
have	negligible	flux)

4. Add	species	with	largest	flux	to	core,	add	all	associated	edge	reactions	to	core
5. Simulate	reaction	system	with	new	core

• Returns	binary	array	of	unimolecular	and	bimolecular	reaction	thresholds:	
• At	every	time	step,	evaluate	if	unimolecular	rate	=	k*CA or	bimolecular	rate	=	k*CA*CB	is	greater	than	toleranceMoveToCore*ratechar

6. Check	if	unimolecular	and	bimolecular	reaction	thresholds	have	changed,	any	core	species	that	can	now	
reaction	together	will	produce	a	True	react	flag.		This	tracks	if	previous	species	are	reacted.

• Note	that	the	key	difference	here	is	that	we	don’t	react	all	core	species	together	at	each	step.		They	are	only	reacted	together
when	they	are	deemed	‘ready’	to	react.		This	avoids	the	problem	of	congestion	we	used	to	have	during	seed	mechanism	
addition.		

7. Instruct	RMG	to	enlarge	edge	using	the	new	set	of	unimolecular	and	bimolecular	react	flags
8. Resimulate reaction	system	the	normal	way	until	the	edge	species	with	highest	flux	above	user	

tolerance	if	found,	repeat	process.
18


